EMship Week - 2019

Control of Welding Deformation in Thin Plate

MUHAMMAD TAHA ALI

Under supervision of

Associate Professor Renardo-Florin Teodor

Introduction

- 1. For **7 decades** welding deformation problem still under analysis.
- 2. Welding deformation has a non linear problem.
- 3. The Critical issue in tugs, Yachts and Ferryboats building.
- 4. Decrease productivity & increase production cost.

Objective

4

To control the welding deformation in thin plate at the time of welding process.

Motivation

- In **last year** of the shipyard, shipyard faces the deformation in the structure of tug.
- Due to the large spacing between profiles.
- By this reason, a lot of time consume to straightened the plates.

Scope of Thesis

- This thesis is performed to get the good outlook of the ferry ships and Yachts. Because of ship owner requirement.
- But at the meantime productivity of the ship is also under consider.
- That is why this thesis is performed to increase the productivity of the ship.

Approaches

7

There are three approaches to analyse the welding deformation in the thin plate:

- 1. Analytical Approach
- 2. Computational Approach
- 3. Experimental Approach

Approach Adopted

- Computational Approach.
- Productive approach other than two approaches.
- Both Thermal and Mechanical Analyses are performed.

Modelling

- In Shipyards, **Grade** "A" steel is used in thin plate.
- The model assumes to be a **temperature** dependent.
- The following properties are the dependent of temperature is given below:
 - Yield Stress
 - Elastic Modulus
 - Thermal Expansion and
 - Poisson`s ratio.

Modelling

- "Barsoum et al" Model
- Maximum Temperature = $1500^{\circ}C$
- Minimum Temperature = $20^{\circ}C$

Models

<u>MODEL # 1</u>

One longitudinal profile with base

plate.

DIMENSION

Base Plate = $1000 \times 1500 \times 5 \text{ mm}^3$

Long. Profile = 65x1500x5 mm³

Models

<u>MODEL # 2</u>

One longitudinal & three transverse

profile with base plate.

DIMENSION

Base Plate = $1000 \times 1500 \times 5 \text{ mm}^3$

Long. Profile = 65x1500x5 mm³

Trans. Profile = 50x450x5 mm³

Computational Method

15

- 1. Software FEMAP.
- 2. Fillet weld is analyzed.

3. Analysis to measure the thermal load and total deformation for TEP – FEM.

17

FEMAP Analysis

- FEMAP Software
- 10 Case Studies are analysed.
- After 10 case studies, Model # 2 give the good result.

18

FEMAP Result

CASE STUDY # 1

Fillet Joint Weld by continuous

welding with Longitudinal member.

CONDITION

Constraints = Fixed from the corners and centre of the base plate.

No. of Nodes = 957

No. of Elements = 896

Total Deformation = 52.32 mm

FEMAP Result

CASE STUDY # 2

Fillet Joint Weld by continuous welding with Longitudinal member & six transverse members.

CONDITION

Constraints = Fixed from the corners and centre of the base plate.

No. of Nodes = 1119.

No. of Elements = 1040.

19

Total Deformation = 21 mm

Fillet Joint Weld - Transverse Platting Method

- Reduction of welding deformation in the thin plate up to 60%.
- Analysis is done in both welding condition:
 - Tack
 - Continuous
- After this analysis transverse Platting method.

Validation

- The experimental analysis result is **20.5 mm**.
- The error between both the analysis is **2.5%**.
- Both the analysis are validated.

Conclusion

- During Welding Process this method is applicable.
- More productive than other methods.
- Productivity of thin plate just in Bulkhead w.r.t time and labour cost is 12 14%.

Recommendation

24

The following methods can be analysed in future in the shipyard:

- 1. Clamping Method
- 2. Welding Procedure Specification (W.P.S)
- 3. Different Welding Sequence
- 4. Inductive Faring Method

Future Work

- 1. For Large and Complex Structure
- 2. Clamping System
- 3. Reinforcement Methods
- 4. Inductive Fairing Method
- 5. Low Transformation Temperature (LTT) Filler Wires
- 6. Virtual System

Emship Week – 2019

THANK YOU FOR YOUR **ATTENTION !!**